一、电机额定功率和实际功率的区别
是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁; 实际功率和实际电流小于额定功率和额定电流,则造成材料浪费。 它们的关系是: 额定功率=额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数
二、比如一台37KW的绕线电机额定电流如何计算?
电流=额定功率/√3*电压*功率因数1、P = √3×U×I×COSφ;2、I = P/√3×U×COSφ;3、I = 37000/√3×380×0.82;
三、电机功率计算口诀
三相二百二电机,千瓦三点五安培。 三相三百八电机,一个千瓦两安培。 三相六百六电机,千瓦一点二安培。 三相三千伏电机,四个千瓦一安培。 三相六千伏电机,八个千瓦一安培。注:以上都是针对三相不同电压级别,大概口算的口诀,具体参考电机铭牌比如:三相22OV电机,功率:11kw,额定电流:11*3.5=38.5A三相380V电机,功率:11kw,额定电流:11*2=22A三相660V电机,功率:110kw,额定电流:110*1.2=132A
四、电机的电流怎么算?
当电机为单相电机时由P=UIcosθ得:I=P/Ucosθ,其中P为电机的额定功率,U为额定电压,cosθ为功率因数;⑵当电机为三相电机时由P=√3×UIcosθ得:I=P/(√3×Ucosθ),其中P为电机的额定功率,U为额定电压,cosθ为功率因数。
供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?① 通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。 ② 藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。 ③ 可以增加系统的裕度,挖掘出了发供电设备的潜力。如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时: 补偿前:1000×0.8=800KW补偿后:1000×0.98=980KW同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。④ 减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。 谐波污染也会增加电缆等输电线路的损耗。而且谐波污染对通讯质量有影响。当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。 因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。
更多防爆行业资讯,敬请关注防爆云平台(www.ex12580.com)云服务——行业资讯栏目!
邮箱:suyuanxu@126.com
QQ:342897643
微信:suyuanxu
一、什么是数字化? 不同国家和不同行业,似乎对数字化转型有不同的定义。比如: 美国早在 2003 年
大数据和人工智能技术在数字经济时代的消费模式变革中扮演着极其重要的角色,都有什么,具体如下1. 精准
(来源:企业网D1net)全球37%的数字化转型项目以失败告终,研究显示,64%的项目缺乏明确路线图
违法和不良信息举报投诉电话:0377-62377728 举报邮箱:fbypt@ex12580.com